A computationally efficient method for delineating irregularly shaped spatial clusters
نویسندگان
چکیده
In this paper, we present an efficiency improvement for the algorithm called AMOEBA, A Multidirectional Optimum Ecotope-Based Algorithm, devised by Aldstadt and Getis (Geogr Anal 38(4):327–343, 2006). AMOEBA embeds a local spatial autocorrelation statistic in an iterative procedure in order to identify spatial clusters (ecotopes) of related spatial units. We provide an analysis of the computational complexity of the original AMOEBA and develop an alternative formulation that reduces computational time without losing optimality. Empirical evidence is provided using georeferenced socio-demographic data in Accra, Ghana.
منابع مشابه
Analytical methods for error propagation in planar space-time prisms
Volume 13, Number 4 / December 2011 ORIGINAL ARTICLE Analytical methods for error propagation in planar space–time prisms Tetsuo Kobayashi, Harvey J. Miller and Walied Othman 355-372 ORIGINAL ARTICLE A computationally efficient method for delineating irregularly shaped spatial clusters Juan C. Duque, Jared Aldstadt, Ermilson Velasquez, Jose L. Franco and Alejandro Betancourt 373-391 ORIGINAL AR...
متن کاملStarScan: A Novel Scan Statistic for Irregularly-Shaped Spatial Clusters
Introduction Kulldorff’s spatial scan statistic1 detects significant spatial clusters of disease by maximizing a likelihood ratio statistic over circular spatial regions. The fast localized subset scan2 enables scalable detection of proximity-constrained subsets and increases power to detect irregularly-shaped clusters, However, unconstrained subset scanning within each circular neighborhood2, ...
متن کاملEvaluation of the Gini Coefficient in Spatial Scan Statistics for Detecting Irregularly Shaped Clusters
Spatial scan statistics with circular or elliptic scanning windows are commonly used for cluster detection in various applications, such as the identification of geographical disease clusters from epidemiological data. It has been pointed out that the method may have difficulty in correctly identifying non-compact, arbitrarily shaped clusters. In this paper, we evaluated the Gini coefficient fo...
متن کاملEvaluation of spatial scan statistics for irregularly shaped disease clusters
Spatial scan statistics are commonly used for geographic disease cluster detection and evaluation. We propose and implement a modified version of the simulated annealing spatial scan statistic that incorporates the concept of “non-compactness” in order to penalize clusters that are very irregular in shape. We evaluate its power for the simulated annealing scan and compare it with the circular a...
متن کاملSpatial multiresolution cluster detection method
A novel multi-resolution cluster detection (MCD) method is proposed to identify irregularly shaped clusters in space. Multi-scale test statistic on a single cell is derived based on likelihood ratio statistic for Bernoulli sequence, Poisson sequence and Normal sequence. A neighborhood variability measure is defined to select the optimal test threshold. The MCD method is compared with single sca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of Geographical Systems
دوره 13 شماره
صفحات -
تاریخ انتشار 2011